Possible involvement of transient receptor potential channels in electrophile-induced insulin secretion from RINm5F cells.
نویسندگان
چکیده
Endogenously produced reactive oxygen species reportedly stimulate insulin secretion from islet β-cells. However, the molecular machinery that governs the oxidant-induced insulin secretion has yet to be determined. The present study demonstrates, using rat islet β-cell-derived RINm5F cells, the involvement of the transient receptor potential (TRP) cation channels in the insulin secretion induced by the lipid peroxidation product 4-hydroxy-2-nonenal. Short-term (1 h) exposure of 4-hydroxy-2-nonenal induced a transient increase in intracellular Ca(2+) concentration and subsequent insulin secretion in a concentration-dependent manner. The increase in intracellular Ca(2+) concentration seemed to be due to an influx through the L-type voltage-dependent Ca(2+) channel, since it was not observed when extracellular Ca(2+) was absent and was inhibited almost completely by diltiazem or nifedipine. Ruthenium red, a non-specific inhibitor of TRP channels, inhibited the Ca(2+) influx and insulin secretion evoked by 4-hydroxy-2-nonenal. Among the TRP channels, TRPA1 was found to be predominantly expressed, not only in RINm5F cells, but also rat islets. TRPA1 agonists, allylisothiocyanate and 15-deoxy-Δ(12,14)-prostaglandin J(2), significantly induced Ca(2+) influx, and a specific inhibitor TRPA1, HC-030031, blocked the effects elicited by 4-hydroxy-2-nonenal. These results suggest that 4-hydroxy-2-nonenal induces Ca(2+) influx via the activation of TRP channels, including TRPA1, which appears to be coupled with the L-type voltage-dependent Ca(2+) channel, and ultimately insulin secretion in RINm5F cells.
منابع مشابه
Inositol tetrakisphosphate isomers and elevation of cytosolic Ca2+ in vasopressin-stimulated insulin-secreting RINm5F cells.
Signal generation during the stimulation of insulin secretion by arginine vasopressin (AVP) was investigated in RINm5F cells. AVP (0.1 microM) caused a biphasic cytosolic Ca2+ ([Ca2+]i) rise, namely a rapid transient marked elevation after stimulation followed by a series of oscillations. In the absence of extracellular Ca2+, the sustained oscillations were abolished, while the initial [Ca2+]i ...
متن کاملInhibition of serine/threonine protein phosphatases promotes opening of voltage-activated L-type Ca2+ channels in insulin-secreting cells.
The biological activity of many proteins, including voltage-sensitive ion channels, is controlled by their state of phosphorylation. Ca2+ influx through voltage-activated L-type Ca2+ channels serves as the major stimulatory signal in insulin-secreting cells. We have now investigated the extent to which Ca2+ handling in clonal insulin-secreting RiNm5F cells was affected by okadaic acid, an inhib...
متن کاملL-type calcium channels in insulin-secreting cells: biochemical characterization and phosphorylation in RINm5F cells.
Opening of dihydropyridine-sensitive voltage-dependent L-type Ca2+-channels (LTCCs) represents the final common pathway for insulin secretion in pancreatic beta-cells and related cell lines. In insulin-secreting cells their exact subunit composition is unknown. We therefore investigated the subunit structure of (+)-[3H]isradipine-labeled LTCCs in insulin-secreting RINm5F cells. Using subunit-sp...
متن کاملInsulin-like growth factor-I-induced DNA synthesis in insulin-secreting cell line RINm5F is associated with phosphorylation of the insulin-like growth factor-I receptor and the insulin receptor substrate-2.
A proliferative effect of insulin-like growth factor-I (IGF-I) was previously shown in pancreatic islets. However, the mechanism under which IGF-I actions are exerted in insulin-secreting cells is not clear. The rat insulinoma cell line, RINm5F, was shown to have both IGF-I receptors and IGF-Il/mannose-6-phosphate receptors. IGF-I binding to cell surface receptors stimulated phosphorylation of ...
متن کاملImproved metabolic stimulus for glucose-induced insulin secretion through GK and PFK-2/FBPase-2 coexpression in insulin-producing RINm5F cells.
The glucose sensor enzyme glucokinase plays a pivotal role in the regulation of glucose-induced insulin secretion in pancreatic beta-cells. Activation of glucokinase represents a promising concept for the treatment of type 2 diabetes. Therefore, we analyzed the glucokinase activation through its physiological interaction partner, the bifunctional enzyme 6-phosphofructo-2-kinase/fructose-2,6-bis...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biological & pharmaceutical bulletin
دوره 35 3 شماره
صفحات -
تاریخ انتشار 2012